We will use a few minutes before the class to practice some questions, especially True/False questions. Answers will be provided during/after the class, depending on how much time we have for the lecture.

- (T/F) If A is $m \times n$ and rank A = m, then the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- (\mathbf{T}/\mathbf{F}) If A is $m \times n$ and the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto, then rank A = m.
- (\mathbf{T}/\mathbf{F}) If H is a subspace of \mathbb{R}^3 , then there is a 3×3 matrix A such that $H = \operatorname{Col} A$.
- (T/F) If B is obtained from a matrix A by several elementary row operations, then rank B = rank A.

Practices before the class with answers (March 3) If Az=5 has a solution, then it is unque.

- (**T**/**F**) If A is $m \times n$ and rank A = m, then the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one. False. Counterexample: $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. If rank A = n (the number of columns in A), then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one. Are been how solution (s) for all b
- (T/F) If A is m × n and the linear transformation x → Ax is onto, then rank A = m. True. If x → Ax is onto, then Col A = ℝ^m and rank A = m. See Theorem 12 (a) in Section 1.9.
- (T/F) If H is a subspace of R³, then there is a 3 × 3 matrix A such that H = Col A. True. If H is the zero subspace, let A be the 3 × 3 zero matrix. If dim H = 1, let {v} be a basis for H and set A = [v v v]. If dim H = 2, let {u, v} be a basis for H and set A = [u v v], for example. If dim H = 3, then H = R³, so A can be any 3 × 3 invertible matrix. Or, let {u, v, w} be a basis for H and set A = [u v w].
- (\mathbf{T}/\mathbf{F}) If *B* is obtained from a matrix *A* by several elementary row operations, then rank $B = \operatorname{rank} A$.

True. Row equivalent matrices have the same number of pivot columns.

5.1 Eigenvectors and Eigenvalues

Example 0. Let $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. The images of \mathbf{u} and \mathbf{v} under multiplication by A are shown in the following figure. In fact, $A\mathbf{v}$ is just $2\mathbf{v}$. So A only "stretches" or dilates \mathbf{v} . $A\vec{u} = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -S \\ -1 \end{bmatrix}$ $A\vec{v} = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$

Definition.

An **eigenvector** of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . A scalar λ is called an **eigenvalue** of A if there is a nontrivial solution \mathbf{x} of $A\mathbf{x} = \lambda \mathbf{x}$; such an \mathbf{x} is called an **eigenvector** corresponding to λ .

Example 1. (1) Is
$$\begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix} = \stackrel{\checkmark}{x}$$

an eigenvector of $\begin{bmatrix} 2 & 6 & 7\\ 3 & 2 & 7\\ 5 & 6 & 4 \end{bmatrix} = \stackrel{\land}{A}$? If so, find the eigenvalue.
By definition, the question is asking is $A \neq a$ scalar multiple of $\stackrel{\checkmark}{x}$?
Compute $A \neq = \begin{pmatrix} 2 & 6 & 7\\ 3 & 2 & 7\\ 5 & 6 & 4 \end{bmatrix} \begin{bmatrix} 1\\ -2\\ 1\\ 1 \end{bmatrix} = \begin{pmatrix} -3\\ 6\\ -3\\ 1 \end{bmatrix} = \begin{pmatrix} -3\\ 6\\ -3\\ 1 \end{bmatrix} = \begin{pmatrix} -3\\ -2\\ 1\\ 1 \end{bmatrix}$
So $\begin{bmatrix} 1\\ -2\\ 1\\ 1 \end{bmatrix}$ is an engenvector of A for the eigenvalue -3.

(2) Is $\lambda = 3$ an eigenvalue of $\begin{vmatrix} 1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1 \end{vmatrix}$? If so, find one corresponding eigenvector. $A\vec{x} = \lambda\vec{x} \iff A\vec{x} - \lambda\vec{x} = \vec{0} \iff A\vec{x} - \lambda \vec{I}\vec{x} = \vec{0} \iff (A - \lambda \vec{I})\vec{x} = \vec{0}$ To determine if 3 is an eigenvalue of A, we need to show the equation $(A-3I)\vec{x} = \vec{o}$ has nontrivial solution. The coefficient monthix is $A-3I = \begin{bmatrix} 1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 2 & 2 \\ 3 & -5 & 1 \\ 0 & 1 & -2 \end{bmatrix}.$ The ougmented montrix is So x, x2 are basic variables and X3 is free. Thus if $\lambda = 3$, $(A - 3I) = \hat{o}$ has non-trivial solution. Therefore $\lambda = 3$ is an eigenvalue. $\begin{cases} x_1 = 3x_3 \\ x_2 = 2x_3 \\ x_3 \text{ is free} \end{cases} \quad \vec{x} = x_3 \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix},$ We can take $\vec{v} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ as an eigenvector corresponds to the eigenvalue $\lambda = 3$.

Remark (Eigenspaces).

- Given a particular eigenvalue λ of the n by n matrix A, define the set E to be all vectors \mathbf{v} that satisfy Equation $(A \lambda I)\mathbf{v} = \mathbf{0}$, i.e., $E = {\mathbf{v} : (A \lambda I)\mathbf{v} = \mathbf{0}}$.
- Note that E equals the nullspace of the matrix $A \lambda I$.
- E is called the eigenspace of A associated with λ .

Example 2. Find a basis for the eigenspace corresponding to each listed eigenvalue.

$$A = \begin{bmatrix} 3 & -1 & 3 \\ -1 & 3 & 3 \\ 6 & 6 & 2 \end{bmatrix}, \lambda = -4$$
ANS: The question is asking us to find a basis for the mallspace of the matrix $A - (-4)I$ from the above discussion.
We compute $A - (-4)I = A + 4I$

$$= \begin{bmatrix} 3 & -1 & 3 \\ -1 & 3 & 3 \\ 6 & 6 & 2 \end{bmatrix} + \begin{bmatrix} 4 & 0 & 6 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 7 & -1 & 3 \\ -1 & 7 & 3 \\ 6 & 6 & 6 \end{bmatrix}$$
The augmented matrix for $(A - (-4)I) \overrightarrow{x} = \overrightarrow{0}$ is
$$\begin{bmatrix} 7 & -1 & 3 & 0 \\ -1 & 7 & 3 & 0 \\ 6 & 6 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 0 \\ -1 & 7 & 3 & 0 \\ 7 & -1 & 3 & 0 \\ 6 & 6 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 0 \\ -1 & 7 & 3 & 0 \\ 7 & -1 & 3 & 0 \\ 6 & 6 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & \cancel{1} & 0 \\ -1 & 7 & 3 & 0 \\ 7 & -1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
So the solution is
$$\overrightarrow{x} = x_{3} - \frac{1}{x}$$
A basis for the eigenspace corresponding to the eigenvalue $\lambda = -4$
is
$$\begin{bmatrix} -\frac{1}{x} \\ -\frac{1}{x} \\ -\frac{1}{x} \end{bmatrix}$$

Theorem 1

The eigenvalues of a triangular matrix are the entries on its main diagonal.

Eq:
$$A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 5 \end{bmatrix}$$
. Then $A - 2I$, $A - 4I$, $A - 5I$ all have
less than 3 pivot positions.
This means the equations $(A - 2I)\vec{x} = \vec{0}$, \cdots have
nontrivial solutions.

Example 3. Find the eigenvalues of the given matrix.

 $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & -4 \end{bmatrix}$ By Thm 1, the eigenvalues are 2, 0, -4.

Example 4. For $A = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 3 & 5 \\ 1 & 3 & 5 \end{bmatrix}$, find one eigenvalue, with no calculation. Justify your answer. Discussion: When does A has an eigenvalue O? A has an eigenvalue O $\iff A \neq = 0 \neq = 0$ has a nontrivial solution (by def). $\iff A = 0 \neq = 0$ has a nontrivial solution (by def). $\iff A = 0 \neq = 0$ has a nontrivial solution (by def). $\iff A = 0 \neq = 0$ has a nontrivial solution (by def). $\iff A = 0 \neq = 0$ has a nontrivial solution (by def). $\iff A = 0 \neq = 0$ has a nontrivial solution (by def). $\iff A = 0 \neq = 0$ has a nontrivial solution (by def). $\iff A = 0 \neq = 0$ has a nontrivial solution (by def). $\iff A = 0 \neq = 0$ has a nontrivial solution (by def). $\iff A = 0 \neq = 0$ has a nontrivial solution (by def). $\iff A = 0 \neq = 0$ has a nontrivial solution (by def). $\iff A = 0 \neq = 0$ has a nontrivial solution (by def). $\implies A = 0 \neq = 0$ has a nontrivial solution (by def). $\implies A = 0 \neq = 0$ has a nontrivial solution (by def). $\implies A = 0 \neq = 0$ has a nontrivial solution (by def). $\implies A = 0 \neq = 0$ has a nontrivial solution (by def). $\implies A = 0 \neq = 0$ has a nontrivial solution (by def). $\implies A = 0 \neq = 0$ has a nontrivial solution (by def). $\implies A = 0 \neq = 0$ has a nontrivial solution (by def). $\implies A = 0 \neq = 0$ has a nontrivial solution (by def). $\implies A = 0 \neq = 0$ has a nontrivial solution (by def). $\implies A = 0 \neq = 0$ has a nontrivial solution (by def). $\implies A = 0 \neq = 0$ has a nontrivial solution (by def).

Theorem 2

If $\mathbf{v}_1, \ldots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is linearly independent.

Exercise 5. Without calculation, find one eigenvalue and two linearly independent eigenvectors of

 $A = \begin{bmatrix} 3 & 3 & -3 \\ 3 & 3 & -3 \\ 3 & 3 & -3 \end{bmatrix}$. Justify your answer.

Solution. The matrix $A = \begin{bmatrix} 3 & 3 & -3 \\ 3 & 3 & -3 \\ 3 & 3 & -3 \end{bmatrix}$ is not invertible because its columns are linearly dependent.

So the number 0 is an eigenvalue of A (see the discussion in **Example 4**).

Eigenvectors for the eigenvalue 0 are solutions of $A\mathbf{x} = \mathbf{0}$ and therefore have entries that produce a linear dependence relation among the columns of A.

Any nonzero vector (in \mathbb{R}^3) whose first and second entries, minus the third, sum to 0, will work.

Find any two such vectors that are not multiples; for instance, (1, 0, 1) and (0, 1, 1).

Exercise 6. Let \mathbf{u} and \mathbf{v} be the vectors shown in the figure, and suppose \mathbf{u} and \mathbf{v} are eigenvectors of a 2×2 matrix A that correspond to eigenvalues -2 and 4, respectively. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by $T(\mathbf{x}) = A\mathbf{x}$ for each \mathbf{x} in \mathbb{R}^2 , and let $\mathbf{w} = \mathbf{u} + \mathbf{v}$. Make a copy of the figure, and on the same coordinate system, carefully plot the vectors $T(\mathbf{u}), T(\mathbf{v})$, and $T(\mathbf{w})$.

We plot the vectors $T(\vec{u}) = -2\vec{u}$, $T(\vec{v}) = 4\vec{v}$, $T(\vec{w}) = -3\vec{u} + 4\vec{v}$

