Practices before the class (March 3)

We will use a few minutes before the class to practice some questions, especially True/False questions. Answers will be provided during/after the class, depending on how much time we have for the lecture.

- (T/F) If A is $m \times n$ and rank $A=m$, then the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
- ($\mathbf{T} / \mathbf{F})$ If A is $m \times n$ and the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto, then rank $A=m$.
- (T/F) If H is a subspace of \mathbb{R}^{3}, then there is a 3×3 matrix A such that $H=\operatorname{Col} A$.
- (T/F) If B is obtained from a matrix A by several elementary row operations, then $\operatorname{rank} B=\operatorname{rank} A$.

Practices before the class with answers (March 3)

If $A \vec{x}=\vec{b}$ has a solution, then it is Unique.

- ($\mathbf{T} / \mathbf{F})$ If A is $m \times n$ and rank $A=m$, then the lihear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one. False. Counterexample: $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$. If rank $A=n($ the number of columns in $A)$, then the transformation $x \mapsto A x$ is one-to-one. $A \vec{x}=\vec{b}$ has solution(s) for all \vec{b}
- (T/F) If A is $m \times n$ and the linear transformation $\underline{\mathbf{x}} \mapsto A \mathbf{x}$ is onto, then rank $A=m$. True. If $\mathbf{x} \mapsto A \mathbf{x}$ is onto, then $\operatorname{Col} A=\mathbb{R}^{m}$ and rank $A=m$. See Theorem 12 (a) in Section 1.9.
- (T/F) If H is a subspace of \mathbb{R}^{3}, then there is a 3×3 matrix A such that $H=\operatorname{Col} A$.

True. If H is the zero subspace, let A be the 3×3 zero matrix.
If $\operatorname{dim} H=1$, let $\{\mathbf{v}\}$ be a basis for H and $\operatorname{set} A=\left[\begin{array}{lll}\mathbf{v} & \mathbf{v}\end{array}\right]$.
If $\operatorname{dim} H=2$, let $\{\mathbf{u}, \mathbf{v}\}$ be a basis for H and $\operatorname{set} A=[\mathbf{u} \overrightarrow{\boldsymbol{u}} \mathbf{v}]$, for example.
If $\operatorname{dim} H=3$, then $H=\mathbb{R}^{3}$, so A can be any 3×3 invertible matrix. Or, let $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ be a basis for H and set $A=\left[\begin{array}{lll}\mathbf{u} & \mathbf{v} & \mathbf{w}\end{array}\right]$.

- (T/F) If B is obtained from a matrix A by several elementary row operations, then rank $B=\operatorname{rank} A$.
True. Row equivalent matrices have the same number of pivot columns.
5.1 Eigenvectors and Eigenvalues

Example 0. Let $A=\left[\begin{array}{rr}3 & -2 \\ 1 & 0\end{array}\right], \mathbf{u}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. The images of \mathbf{u} and \mathbf{v} under multiplication by A are shown in the following figure. In fact, $A \mathbf{v}$ is just $2 \mathbf{v}$. So A only "stretches" or dilates \mathbf{v}.

$$
A \vec{u}=\left[\begin{array}{rr}
3 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-1
\end{array}\right]
$$

FIGURE 1 Effects of multiplication by A.
In this section, we study the equation like $A \vec{v}=2 \vec{v}$ i.e. the vectors are transformed by A into a scalar of themselves.

Definition.
An eigenvector of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial solution \mathbf{x} of $A \mathbf{x}=\lambda \mathbf{x}$; such an \mathbf{x} is called an eigenvector corresponding to λ.

Example 1. (1) Is $\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right] \begin{aligned} & \vec{x} \\ & \text { an eigenvector of }\left[\begin{array}{lll}2 & 6 & 7 \\ 3 & 2 & 7 \\ 5 & 6 & 4\end{array}\right]=\mathrm{A} \\ & \text { ? If so, find the eigenvalue. }\end{aligned}$
By definition, the question is asking is $A \vec{x}$ a scalar multiple of \vec{x} ?

$$
\text { Compute } A \vec{x}=\left[\begin{array}{lll}
2 & 6 & 7 \\
3 & 2 & 7 \\
5 & 6 & 4
\end{array}\right]\left[\begin{array}{c}
\vec{x} \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 \\
6 \\
-3
\end{array}\right]=-3 \vec{x}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

So $\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$ is an engenvector of A for the eigenvalue -3 .
(2) Is $\lambda=3$ an eigenvalue of $\left[\begin{array}{rrr}1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1\end{array}\right]$? If so, find one corresponding eigenvector.

$$
A \vec{x}=\lambda \vec{x} \Longleftrightarrow A \vec{x}-\lambda \vec{x}=\overrightarrow{0} \Longleftrightarrow A \vec{x}-\lambda I \vec{x}=\overrightarrow{0} \Longleftrightarrow(A-\lambda I) \vec{x}=\overrightarrow{0}
$$

To determine if 3 is an eigenvalue of A, we need to show the equation $(A-3 I) \vec{x}=\overrightarrow{0}$ has nontrivial solution.
The coefficient matrix is

$$
A-3 I=\left[\begin{array}{ccc}
1 & 2 & 2 \\
3 & -2 & 1 \\
0 & 1 & 1
\end{array}\right]-\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 2 & 2 \\
3 & -5 & 1 \\
0 & 1 & -2
\end{array}\right]
$$

The augmented matrix is

$$
\left[\begin{array}{cc}
A-3 I & \overrightarrow{0}
\end{array}\right]=\left[\begin{array}{cccc}
-2 & 2 & 2 & 0 \\
3 & -5 & 1 & 0 \\
0 & 1 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -3 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So $x_{1} x_{2}$ are basic variables and x_{3} is free.
Thus if $\lambda=3,(A-3 I) \vec{x}=\overrightarrow{0}$ has nontrivial solution.
Therefore $\lambda=3$ is an eigenvalue.

$$
\left\{\begin{array}{l}
x_{1}=3 x_{3} \\
x_{2}=2 x_{3} \\
x_{3} \text { is free }
\end{array} \quad \vec{x}=x_{3}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]\right.
$$

We can take $\stackrel{\rightharpoonup}{\nabla}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ as an eigenvector corresponds to the eigenvalue $\lambda=3$.

Remark (Eigenspaces).

- Given a particular eigenvalue λ of the n by n matrix A, define the set E to be all vectors \mathbf{v} that satisfy Equation $(A-\lambda I) \mathbf{v}=\mathbf{0}$, i.e., $E=\{\mathbf{v}:(A-\lambda I) \mathbf{v}=\mathbf{0}\}$.
- Note that E equals the nullspace of the matrix $A-\lambda I$.
- E is called the eigenspace of A associated with λ.

Example 2. Find a basis for the eigenspace corresponding to each listed eigenvalue.

$$
A=\left[\begin{array}{rrr}
3 & -1 & 3 \\
-1 & 3 & 3 \\
6 & 6 & 2
\end{array}\right], \lambda=-4
$$

ANS: The question is asking us to find a basis for the nullspace of the matrix $A-(-4)$ I from the above discussion.
We compute $A-(-4) I=A+4 I$

$$
=\left[\begin{array}{rrr}
3 & -1 & 3 \\
-1 & 3 & 3 \\
6 & 6 & 2
\end{array}\right]+\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]=\left[\begin{array}{rrr}
7 & -1 & 3 \\
-1 & 7 & 3 \\
6 & 6 & 6
\end{array}\right]
$$

The augmented matrix for $(A-(-4) I) \vec{x}=\overrightarrow{0}$ is

$$
\left[\begin{array}{cccc}
7 & -1 & 3 & 0 \\
-1 & 7 & 3 & 0 \\
6 & 6 & 6 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 7 & 3 & 0 \\
7 & -1 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 8 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$\sim\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{cccc}(1) & 0 & \frac{1}{2} & 0 \\ 0 & (1) & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad$ So the solution is $\quad \vec{x}=x_{3}\left[\begin{array}{r}-\frac{1}{2} \\ -\frac{1}{2} \\ 1\end{array}\right]$
A basis for the eigenspace corresponding to the eigenvalue $\lambda=-4$ is $\left[\begin{array}{c}-\frac{1}{2} \\ -\frac{1}{2} \\ 1\end{array}\right]$

Theorem 1
The eigenvalues of a triangular matrix are the entries on its main diagonal.
Eg: $A=\left[\begin{array}{lll}2 & 3 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 5\end{array}\right]$. Then $A-2 I, A-4 I, A-5 I$ all have This means the equations $(A-2 I) \vec{x}=\overrightarrow{0}, \cdots$ have nontrivial solutions.

Example 3. Find the eigenvalues of the given matrix.

$$
\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & -4
\end{array}\right]
$$

By Tho 1, the eigenvalues are $2,0,-4$.

Example 4. For $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 1 & 3 & 5 \\ 1 & 3 & 5\end{array}\right]$, find one eigenvalue, with no calculation. Justify your answer.
Discussion: When does A has an eigenvalue O ?
A has an eigenvalue 0
$\Leftrightarrow A \vec{x}=0 \vec{x}=\overrightarrow{0}$ has a nontrivial solution (by def).
$\Leftrightarrow A$ is not invertible (by the invertible matrix theorem)
Thus A has an eigenvalue $0 \Leftrightarrow A$ is not invertible.
ANS: Notice that the columns of the given A are linearly dependent. So A is not invertible.
Thus 0 must be an eigenvalue for A.

Theorem 2

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is linearly independent.

Exercise 5. Without calculation, find one eigenvalue and two linearly independent eigenvectors of $A=\left[\begin{array}{lll}3 & 3 & -3 \\ 3 & 3 & -3 \\ 3 & 3 & -3\end{array}\right]$. Justify your answer.

Solution. The matrix $A=\left[\begin{array}{ccc}3 & 3 & -3 \\ 3 & 3 & -3 \\ 3 & 3 & -3\end{array}\right]$ is not invertible because its columns are linearly dependent.
So the number 0 is an eigenvalue of A (see the discussion in Example 4).
Eigenvectors for the eigenvalue 0 are solutions of $A \mathbf{x}=\mathbf{0}$ and therefore have entries that produce a linear dependence relation among the columns of A.

Any nonzero vector (in \mathbb{R}^{3}) whose first and second entries, minus the third, sum to 0 , will work.
Find any two such vectors that are not multiples; for instance, $(1,0,1)$ and $(0,1,1)$.

Exercise 6. Let \mathbf{u} and \mathbf{v} be the vectors shown in the figure, and suppose \mathbf{u} and \mathbf{v} are eigenvectors of a 2×2 matrix A that correspond to eigenvalues -2 and 4 , respectively. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by $T(\mathbf{x})=A \mathbf{x}$ for each \mathbf{x} in \mathbb{R}^{2}, and let $\mathbf{w}=\mathbf{u}+\mathbf{v}$. Make a copy of the figure, and on the same coordinate system, carefully plot the vectors $T(\mathbf{u}), T(\mathbf{v})$, and $T(\mathbf{w})$.

ANS: We know \vec{u}, \vec{v} are eigenvectors corresponding to eigenvalues $-2,4$, respectively

$$
\begin{aligned}
& T(\vec{u})=A \vec{u}=-2 \vec{u} \\
& T(\vec{v})=A \vec{v}=4 \vec{v}
\end{aligned}
$$

$$
\text { As } \vec{w}=\vec{u}+\vec{v}, T(\vec{w})=A \vec{u}+A \vec{v}=-2 \vec{u}+4 \vec{v} .
$$

We plot the vectors $T(\vec{u})=-2 \vec{n}, T(\vec{v})=4 \vec{v}, T(\vec{w})=-2 \vec{u}+4 \vec{v}$

$$
T(\vec{v})=-2 \vec{u}+4 \vec{v}
$$

$$
T(\vec{v})=4 \vec{v}
$$

